Workshop on

“Waste Management in Software Engineering & Mathematical Modeling”

8th & 9th November , 2013, R. V. College of Engineering Mysore Road, Bangalore – 560 059

Reducing Wastages in Software Projects

Presented by
S. Gopal, Managing Director, Varagi Technologies Pvt Ltd.
The concept of "waste" in business was coined in the manufacturing industry during late 1940s. It was used by Toyota. In those days, automobiles involved a huge amount of manufacturing, and companies had to charge their customers a high price. The only option for Toyota to reduce car prices was to find ways to reduce the manufacturing costs. As part of this exercise, they started identifying "waste," which meant the feature (or process step) that did not add value for the customer. Once they identified the waste, they created ways to eliminate that waste from the system.

Waste is, in fact, the opposite of value (a capability delivered to the customer through which the customer attains a tangible or intangible benefit). So whatever feature or functionality or process step that neither adds value nor is used will be considered waste and should be eliminated from the system/product/process.

Waste Management in Software Development

Mary and Tom Poppendieck have identified seven wastes that may occur in software development that help us remove them or at least reduce their impact with respect to Agile software development. Generally, we will find these wastes during software development planning or during execution.

Partially done work

Meaning: It generally means that the work that is not completely done, and hence we cannot demo it or cannot release it. This can include code that is not refactored, code that is not unit tested/integration tested, code that is not properly documented, code that is not deployable, etc.

Reasons:

1. Starting the software development without having complete information about the project from the client
2. Technical complexity that was not analyzed properly during the planning

3. Wait time between the tasks that are identified to complete the software project
4. Improper dependencies referring to earlier projects
5. Stopping an existing project that is halfway done and getting into a new project.

6. Incomplete/inadequate tasks identification

How can we eliminate/ reduce it?

1. Try to have a detailed discussion with the client to understand the functionality of the project, and also to understand what value it adds to the application. Then prioritize it for the development. This calls for great coordination and collaboration between the team and the client.

2. Try to evaluate the technical complexity of the project based on its functionality. If required, go for a technical spike before arriving at the estimate. This will, at the least, help us to assess how complex it is so that we can either pick it up directly or ask the client to split it -- or go with some other technical implementation approach.

3. Try to do tasks in parallel as much as possible. When we are stuck somewhere, let us look for help. Develop the cross-functional teams that can address this point effectively, because anyone can pick up any task at least to some extent.

4. Manage the project backlog in such a way that the dependencies among various projects are clearly identified before the projects are picked up for a development. Again, this needs lot of coordination and collaboration between the team and the client. Sometimes the client may not have understood the technical dependencies, so in such scenarios the team should help the client. Example: Log-in cannot be prioritized without registration.

5. When you have projects lined up for development, do not try to manipulate them during the sprint. It will add unnecessary rework and it will lead to loss in time.

Additional features:
Meaning: Providing more features than what is being asked for. For your information 80 percent of users use only 20 percent of the product features.

Possible reasons:

1. Lack of understanding of the project vision
2. Adding frills by the development team

3. Wrong prioritization of product features

How can you eliminate it?
1. Adding frills generally done by the development team, and sometimes it can be unintentional. While prioritizing the stories for a sprint, the product owner and the development team have to come to a common agreement on the stories for that sprint, and they must stick to that list.

2. Right from the planning, the features have to be carefully prioritized. The keys to prioritizing are value, cost, and risk.

Relearning

Meaning: Not using the knowledge that is available within the team members, trying to reinvent the wheel.

Reasons:

1. Lack of a proper knowledge-sharing process within the team

2. Lack of required documentation

3. Missing information radiation and osmatic communication

4. Distributed teams

How can to eliminate it?

1. The team should share knowledge continuously throughout the development phase. The best places for knowledge sharing are the daily meeting and the task board. All the team members should participate in all team meetings. This will enhance knowledge sharing.
2. The general myth about Agile is: "Agile is anti-documentation." This is not true. The team should prepare all the required documentation, but it should always be "just in time."

3. Try to keep all important information displayed in a team space so that everyone has equal access. Communication plays a vital role in information sharing and knowledge distribution.
4. Co-location is the best approach for executing Agile projects. If this isn't possible, due to any practical reasons, use tools like videoconferencing so that knowledge sharing is easier.
Delays

Meaning: Anything that causes more time to deliver a value-added activity, or delays the beginning of the value-added activity.

Possible reasons:

1. Lack of required team members

2. Unwanted processes

3. Too many things in progress

4. External dependencies

5. Lack of "value" understanding

6. Assumptions/clarifications and impediments

Nearly 70 percent of IT projects fail in some important way, putting the economic impact worldwide at three billion dollars, which corresponds to 4.7 percent of global GDP. And it's a universal problem: setbacks span the public and private sectors, occur in all industries, and often result in substantial economic and productivity losses.

Even if every IT project in the public and private sectors were successful, end users would still be unhappy with the result. In general, these projects are not designed for today's social era and do not deliver direct value to end-users. There is a huge disconnect between what technology builders create and the value that end-users demand.

Can managing software development be as simple as reading a brief “to-do/not-to-do” list? No. All evidence indicates that software development is especially difficult to manage. If not, why do repeated studies come to these same conclusions that most software projects are

Among the most common factors:

· Unrealistic or unarticulated project goals

· Inaccurate estimates of needed resources

· Badly defined system requirements

· Poor reporting of the project's status

· Unmanaged risks

· Poor communication among customers, developers, and users

· Use of immature technology

· Inability to handle the project's complexity

· Sloppy development practices

· Poor project management

· Stakeholder politics

· Commercial pressures

Insufficient Time

Often the deadline date is decided before the project starts and is non-negotiable. These results in a headlong rush to get started on the assumption, the sooner you begin coding the sooner you'll finish.

This is almost always the wrong approach. It is important to spend time to create a good design. Not having a good design leads to continuing changes throughout the development phase. When this happens time and budget are consumed at a rapid rate. A 100-day project will not be completed in 1 day by 100 developers. More people results in an exponential increase in complexity.
Solution: Make time to create a good design. Don't be tempted to jump straight in and begin coding. Assign time to this task and the rest of the project will run much better. It will improve your reputation when you deliver something that fulfills the customers' expectations and works properly first time.

Insufficient Budget

Many projects have a "lowest price most successful candidate" policy, or an unrealistically low budget, not based on the true requirements. When this happens everything slows down. Resources are slow to arrive, or never arrive, corners are cut and quality suffers.

Solution: Be realistic about the budget and make sure it is based on the full requirements. Avoid basing selection of a supplier solely on lowest price. Go with a supplier or team that has a proven track record of delivery within budget.

Poor Communication

There's an old saying, "never assume anything", and this is especially true for software projects. Good communication with the customer, users and especially the development team is important for project success. Does everyone in the team understand you? Do they know exactly what is expected of them or have you assumed they know? Do they communicate well with one another, with users and with other departments?

Solution: Identify potential communication breakdowns now. These can lead to confusion and complications later in the project. Never assume that everyone understands. Take time to create an environment that will bring the project in on time, on budget and to the customers' expectations.

Reviewing Project Progress

As a project progresses things change and these changes can have a significant impact. It is important to review progress regularly so challenges can be overcome early, and stakeholders warned of possible delays and changes to the product.

Solution: Set frequent milestones during the project when you can review progress with your team and adjust as necessary to stay on course. Stay close to your team so you understand what is going on, and what challenges they face.

Inadequate Testing

When the pressure to deliver is on, it is often testing that suffers. All the testing is left until the end of the development cycle and only lip service paid to it. Often, the result is a product filled with bugs and an unhappy customer.

Solution: Carryout testing throughout the development life cycle, testing each module or component as it's developed. This leaves just the integration testing to be carried out at the end of the development life cycle.

Inadequate Quality Assurance

Often in the haste to deliver the software, quality assurance suffers. Documentation is not completed for code changes, the design contains flaws, and implementations can be incomplete. These all lead to rework, lost time and eventually unhappy customers.

Solution: Take time to quality check and document software before it is released.
Not adhering to Industry Standards

Conforming to industry standards in your software projects can prove effective by ensuring accessibility, portability, usability, robustness and reducing problems now and in the future. Bodies such as the International Organisation for Standardization (ISO) and World Wide Web Consortium (W3C) have developed open standards that when used are hard to challenge.

Solution: Take time to introduce standards for your projects. Identify what works well and keep doing it and what doesn't, and change it. Review and update your standards regularly.

Schedule and Cost are not interchangeable

The relationship between schedule and the cost/effort required to complete a software project is profoundly non-linear. For any project there exist optimal schedule and staffing ranges. When a schedule is shortened to meet a deadline, the team will not function as efficiently. The quality of the delivered product will also be degraded due to the increased communication complexity and reduced testing. Moreover, there exist very real limits to the amount of schedule compression that is possible. Unrealistic schedules are the number one cause of project failure. For any software project there is a continuum of feasible solutions that is framed by what is impractical and what is impossible. Note that as the schedule is reduced the effort (cost) increases exponentially.

More points on successful software management with less wastage will be delivered at the seminar by the presenter.
Know What They Pay You to Do

Align yourself with your manager’s priorities; you do the work they pay you to do.

Plan the Work: Portfolio Management

Planning includes the following activities: identifying the project portfolio (i.e., new work, ongoing work, periodic work, ad hoc work), developing strategies for managing the work for each project. Assign people to one important project then allow them to take on little bits and pieces of less important work when they need a break or are stuck on the important project.
Accept Only One No. 1 Priority at a Time

Senior managers perform different work than first-line and middle managers as they can only work on one No. 1 priority task at a time.

Commit to Projects after Checking With Your Staff

Hire the Best People for the Job

Preserve Good Teams

Treat People Individually and With Respect
Plan Training Time Each Week

Fire People Who Cannot Perform the Work

Emphasize Results, Not Time

Admit Your Mistakes

Recognize and Reward Good Work

Conclusion:

Responsibility and accountability for IT project success or failure lies with senior management - transferring blame to project managers or third parties is ultimately a misguided effort that will not solve this massive problem. It is time for the business community to expose IT project failures as an important source of economic waste and take steps to fix the problem.

Varagi Technologies Pvt Ltd., 394. Level II, Sector-15, Panchkula-134113, Chandigarh Region. Tel: +91 172 2591299 www.varagitech.com

