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Abstract

A goal of science is to develop the means for reliable prediction to guidedecision and action. This is accomplished by finding algorithmiccompressions of observations and physical laws. Physical laws arestatements about classes of phenomena, and initial conditions are statementsabout particular systems. Thus, it is the solutions to the equations, and notthe equations themselves, that provide a mathematical description of thephysical phenomena. In constructing and refining mathematical theories, werely heavily on models. At its conception, a model provides the frameworkfor a mathematical interpretation of new phenomena. We apply linearity when we model the behaviour of a device or system that is forced or pushed by a complex set of inputs or excitations. We obtain the response of that device or system to the sum of the individual inputs by adding or superposing the separate responses of the system to each individual input. This important result is called the principle of superposition. Engineers use this principle to predict the response of a system to a complicated input by decomposing or breaking down that input into a set of simpler inputs that produce known system responses or behaviours.

Introduction

A model is intended to generalize and toabstract. A perfect model is one that perfectly represents reality. In practice,however, such a perfect model would defeat its purpose: it would be ascomplex as the problem it is attempting to represent. Thus, modeling in the physical sciences is normally reduced to many, more easily managed, components. The primary value of models in theearth sciences is heuristic (i.e. an aid to learning, as through trial-and-errormethods). Thedemonstration of agreement between observationand prediction is inherently partial since natural systems are never closed.The ocean is a natural system and, as an acoustic medium, it is nota closed (or deterministic) system. As will be demonstrated, most underwateracoustic models treat the ocean as a deterministic system. This can createproblems when evaluating models against field data that are, by nature, nondeterministic(i.e. stochastic or chaotic). Thus, evaluation is an importantaspect of any discussion of modeling. Frequently, models become data limited.This means that observational data are lacking in sufficient quantity orquality with which to support model initialization and model evaluation. With the advent of digital computers, modeling in the physical sciences advanced dramatically. Improvements in computer capabilities over the pastseveral decades have permitted researchers to incorporate more complexityinto their models. Although computationalcapabilities have increased dramatically over the past several decades, sotoo have the expectations placed on software performance. Consequently,software efficiency still remains a very critical issue.
Mathematical modelling

The term “modeling and simulation” (M&S) will refer collectivelyto those techniques that can predict or diagnose the performance of complexsystems. A distinction is made between physical (or “physics-based”) models andmathematical models, both of which are addressed in this book. Physicalmodels pertain to theoretical or conceptual representations of the physicalprocesses occurring within the ocean; the term “analytical model” issometimes used synonymously. Mathematical models include both empiricalmodels (those based on observations) and numerical models (those basedon mathematical representations of the governing physics). The physical models underlying the numerical models have been wellknown for some time. Nevertheless, the transition to operational computermodels has been hampered by several factors: limitations in computer capabilities,inefficient mathematical methods. Despite continuingadvances in computational power, the development of more efficientmathematical methods and the dramatic growth in databases, the emergenceof increasingly sophisticated models continues to challenge availableresources.
Basic Principles of Mathematical Modeling
Why? What are we looking for?  Identify the need for the model.
Find? What do we want to know? List the data we are seeking.
Given? What do we know? Identify the available relevant data.
Assume? What can we assume? Identify the circumstances that apply.
How? How should we look at this model? Identify the governing physical principles.
Predict? What will our model predict?  Identify the equations that will be used, the calculations that will be made, and the answers that will result.
Valid? Are the predictions valid?  Identify tests that can be made validate the model, i.e., is it consistent with its principles and assumptions?
Verified? Are the predictions good?  Identify tests that can be made to verify the model, i.e., is it useful in terms of the initial reason it was done?
Improve? Can we improve the model?  Identify parameter values that are not adequately known, variables that should have been included, and/or assumptions/restrictions that could be lifted. Implement the iterative loop that we can call “model-validate-verify-improve-predict.”
Use? How will we exercise the model?  What will we do with the model?
Real world and a conceptual world 

We identify a “real world” and a “conceptual world.”The external world is the one we call real. Here we observe various phenomena and behaviours, whethernatural in origin or produced by artefacts. The conceptual world is theworld of the mind—where we live when we try to understand what isgoing on in that real, external world. The conceptual world can be viewedas having three stages: observation, modeling, and prediction. In the observation part of the scientific method we measure what ishappening in the real world. Here we gather empirical evidence and “factson the ground.”
In the modelling part we are concerned with analyzing the above observations for one of (at least) threereasons:
1. models that describe the behaviour or results observed. 
2. models that explain why that behaviour and results occurred as they did. 
3. models that allow us to predict future behaviours or results that are as yet unseen or unmeasured.
In the prediction part of the scientific method we exercise our modelsto tell us what will happen in a yet-to-be-conducted experiment or inan anticipated set of events in the real world. These predictions are thenfollowed by observations that serve either to validate the model or to suggestreasons that the model is inadequate. There is a basic, yet very powerful idea that is central to mathematical modeling, namely, that every equationwe mustuse be dimensionally homogeneousor dimensionally consistent. It is quite logical that every term in anenergy equation has total dimensions of energy, and that every term ina balance of mass should have the dimensions of mass. This statementprovides the basis for a technique called dimensional analysis. An important decision in modeling is choosing an appropriate level ofdetail for the problem at hand. This process is called abstraction and ittypically requires a thoughtful approach to identifying those phenomenaon which we want to focus. The notion of scaling includes several ideas,including the effects of geometry on scale, the relationship of function toscale, and the role of size in determining limits—all of which are neededto choose the right scale for a model in relation to the “reality” we want tocapture.
When we develop mathematical models, we often start with statements that indicate that some property of an object or system is being conserved.For example, we could analyze the motion of a body moving on an ideal,frictionless path by noting that its energy is conserved.We will apply balance or conservation principlesto assess the effect of maintaining or conserving levels of important physicalproperties. Conservation and balance equations are related—in fact, conservation laws are special cases of balance laws.
Linearity  in Mathematical modeling

Linearity is one of the most important concepts in mathematical modeling. Models of devices or systems are said to be linear when their basicequations—whether algebraic, differential, or integral—are such that the magnitude of their behaviour or response produced is directly proportionalto the excitation or input that drives them. We apply linearity when we model the behaviour of a device or system that is forced or pushed by a complex set of inputs or excitations. We obtain the response of that device or system to the sum of the individual inputs by adding or superposing the separate responses of the system to each individual input. This important result is called the principle of superposition. Engineers use this principle to predict the response of a system to a complicated input by decomposing or breaking down that input into a set of simpler inputs that produce known system responses or behaviours.
Conclusions
Thus, in short we can claim that Mathematical models are representations or descriptions of reality —they depict reality, never to be confused with the reality itself. If the behaviour predicted by our models does not reflect what we see or measure in the real world, it is the models that need to be fixed—and not the world.  When  ever models are not fixed for the real world correctly , then waste occurs in mathematical modelling. But this can be managed by selecting a correct model for the real world based on experience , by saving time, money and energy.
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