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Abstract— 


Classification of unknown dataset, especially when dealing with heterogeneity, can be easily achieved by using several methods. Under the circumstances, there exist many conditions/situations under which ensemble based systems can prove to be more effective and beneficial for classification of datasets compared to their counterparts, especially single classifier systems. Of the many reasons, the most compelling being that, Ensemble based systems utilizes techniques such as bagging, boosting, stacked generalization etc. applied to all types of data effecting/making classification in required format almost instantaneously, which  assumes to be all data become available at once. However, given the diversity, for certain applications, it is not uncommon for the entire dataset to gradually become available in small batches over a period of time – basically due to effects of conversion and translation. Furthermore, this series of processes on datasets generates a new set of classes that were not present in mother/ master/original (earlier/ previous) dataset. In such situations, it becomes important to learn about the new additional information content generated in the new data, at the same time preserving the information/knowledge contained with earlier datasets, for which we might not have an access after the conversion and translations we have affected. An incremental learning algorithm -  Learn++, was inspirational derivative of the AdaBoost (adaptive boosting) algorithm, originally developed to improve the classification performance of weak classifiers. Learn++ is an incremental learning algorithm that allows supervised classification on data to help learn from new data preserving previous information/knowledge, especially when the previous history of data is no longer available due to conversion/translation process. Such an approach involves generating a string of ensemble of classifiers for each dataset becoming available, resulting in an ensemble-of-ensembles. However, Learn++ suffers from inherent “out-voting problem when asked to learn new classes introduced in new dataset, which causes it to generate an unnecessarily large number of classifiers[4]. Our study is to survey and present the facts, limitations and issues associated with such classifications in this paper.
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I. INTRODUCTION

Data classification is a two step process. In the first step model is built describing a predetermined set of data classes or concepts. The model is constructed by analyzing database tuples described by attributes. Each tuple is assumed to belong to predefined class, determined by the class label attribute. There are two types of learning methods, supervised learning (class label of each training sample is provided e.g. classification) and un-supervised learning (class label of each training sample is provided e.g. clustering).  In the second step, the model is used for classification. First, the predictive accuracy of the model is estimated. If the accuracy of the model is considered acceptable, the model can be used to classify future data tuples or objects for which the class label is not known/previously unseen data. 

In matters of great importance that have financial, medical, social, or other implications, we often seek a second opinion before making a decision, sometimes a third, and sometimes many more. In doing so, we weight the individual opinions, and combine them through some thought process to reach a final decision that is presumably the most informed one. The process of consulting “several experts” before making a final decision is perhaps second nature to us. Ensemble systems follow exactly such an approach to data analysis.
Ensemble based systems are also known under various other names, such as multiple classifier systems, committee of classifiers, or mixture of experts. Ensemble systems have shown to produce favorable results compared to those of single-expert systems for a broad range of applications and under a variety of scenarios. There are many conditions under which ensemble based systems may be more beneficial than their single classifier counterparts, algorithms for generating individual components/classifiers of the ensemble systems[3]. Individual classifiers of ensemble systems are combined through various procedures such as majority voting, weighted majority voting[10] etc. Bagging, boosting, AdaBoost, stacked generalization, and hierarchical mixture of experts etc. are the various examples of ensemble base classification algorithms, which requires having all data become available at once.
Supervised classifiers are effective and powerful learning tools for pattern recognition and machine learning applications. As most machine learning and pattern recognition professionals are painfully aware of, however, the generalization performance of any supervised learning algorithm relies heavily on adequate and representative training data. Many real-world applications, where data become available in batches over a period of time, require that the information provided by each dataset be incrementally learned. Many popular classifiers, such as the multilayer perceptron (MLP), radial basis function networks, and support vector machines are all stable classifiers. In their native form, they are not structurally suitable for incremental learning. When additional data becomes available, these networks are typically discarded and retrained with combined data, which consists of both the original and the new data. All previously acquired knowledge is therefore lost, a phenomenon commonly known as catastrophic forgetting[7] and it is a common problem of many automated signal classification algorithms, including the multilayer perceptron, radial basis function, probabilistic, wavelet, and kohonen networks[8]. Furthermore, if the original data is no longer available, or when new data includes instances from new classes not present in the original data, these algorithms become completely useless for learning new information. The problem becomes particularly challenging if the previously seen data are no longer available when new data arrive, as the traditional approach of combining old and new data to train a new classifier then becomes infeasible. Learning from new data without having access to old data, while retaining previously acquired knowledge, is called incremental learning. Incremental learning is one that meets the following criteria:

1. It should be able to learn additional information from new data.

2. It should not require access to the original data, used to train the existing classifier.

3. It should preserve previously acquired knowledge (that is, it should not suffer from catastrophic forgetting).

4. It should be able to accommodate new classes that may be introduced with new data.

For a sequence of training datasets, an incremental learning algorithm produces a sequence of hypotheses, where the current hypothesis describes all data seen thus far but depends only on previous hypotheses and the current data. Incremental learning of new information without forgetting what is previously learned raises the so-called stability – plasticity dilemma[4]: some information may have to be lost to learn new information, as learning new patterns will tend to overwrite formerly acquired knowledge. Thus, a stable classifier can preserve existing knowledge, but cannot accommodate new information, whereas a plastic classifier can learn new information, but cannot retain prior knowledge. The issue at hand is then, if, when and how much should one be sacrificed for the other to achieve a meaningful balance.
II. Multiple classifier system

Ensemble systems have attracted a great deal of attention over the last decade due to their empirical success over single classifier systems on a variety of applications. Such systems combine an ensemble of generally weak classifiers to take advantage of the so-called instability of the weak classifier, which causes the classifiers to construct sufficiently different decision boundaries for minor modifications in their training parameters, causing each classifier to make different errors on any given instance. A strategic combination of these classifiers, such as weighted majority voting, then eliminates the individual errors, generating a strong classifier [5, 6].

Bootstrap-based ideas have also been used in recent development of many ensemble-based algorithms for classification. These algorithms use multiple classifiers, generally to improve classification performance: each classifier provides an alternative solution whose combination may provide a superior solution than the one provided by any single classifier. 
The primary benefit of using ensemble systems is the reduction of variance and increase in confidence of the decision. Due to many random variations in a given classifier model (different training data, different initialization, etc.), the decision obtained by any given classifier may vary substantially from one training trial to another—even if the model structure is kept constant. Then, combining the outputs of several such classifiers by, for example, averaging the output decisions can reduce the risk of an unfortunate selection of a poorly performing classifier [1].
Another use of ensemble systems includes splitting large datasets into smaller and logical partitions, each used to train a separate classifier. This can be more efficient than using a single model to describe the entire data. The opposite problem, having too little data, can also be handled using ensemble systems, and this is where bootstrap-based ideas start surfacing: generate multiple classifiers, each trained on a different subset of the data, obtained through bootstrap re-sampling [1].

The key enabling concept in all ensemble based systems is diversity. Clearly, there is no advantage in combining classifiers that provide identical outputs. An ensemble system is most beneficial if classifier outputs are independent, or better yet, negatively correlated. Specifically, we need classifiers that only differ in their misclassification but agree otherwise. Then, the ensemble can augment the correct decision and average out the individual errors. Diversity among classifiers can be achieved in many ways, such as training classifiers with different subsets of the features (so-called random subspace methods). However, using different training data subsets obtained by resampling of the original training data is most commonly used and constitutes the link between ensemble systems and bootstrap techniques.

Of course, once the classifiers are generated, a strategy is needed to combine their outputs. In simple majority voting, a commonly used combination rule, each classifier votes on the class it predicts, and the class receiving the largest number of votes is the ensemble decision. In weighted majority voting, each classifier is given a voting weight inversely proportional to its re-substitution error. The class with the largest total vote is then declared the winner. Algebraic combination (e.g., sum, product) of the class-specific outputs can also be used, where the class receiving the highest combined support is then chosen by the ensemble.  Table-1 shows the Comparison of Various Ensemble systems[1,3,11and 12].
Freund and Schapire introduced AdaBoost, which is a more general version of the original ensemble based boosting algorithm. Among its many variations, AdaBoost.M1 and AdaBoost.R are more commonly used, as they are capable of handling multiclass and regression problems, respectively. AdaBoost generates a set of hypotheses, and combines them through weighted majority voting of the classes predicted by the individual hypotheses. The hypotheses are generated by training a weak classifier, using instances drawn from an iteratively updated distribution of the training data. This distribution update ensures that instances misclassified by the previous classifier are more likely to be included in the training data of the next classifier. Hence, consecutive classifiers’ training data are geared towards increasingly hard-to-classify instances.
	
	Bagging
	Boosting
	 Stacking
	Incremental learning

	Weak learner
	Same
	Same
	Heterogeneous or homogeneous
	Same

	Training data become available
	All at once
	All at once
	All at once
	In batch

	Can learn new classes?
	No
	No
	No
	Yes



	Run weak learner on?
	Bootstrap replicates of the training set
	Same, but differently weighted set
	Round-robin (cross-validation)
	Same, but differently weighted set

	Emphasizing “difficult” examples?
	No
	Yes
	No
	Yes

	Is ensemble of ensemble?
	No
	No
	No
	Yes

	Combination rule
	Simple majority voting
	Weighted majority voting
	Meta learner
	weighted majority voting

	Splitting of data
	Length-wise
	Width-wise
	Length-wise
	Width-wise

	Hierarchical?
	No, but can be extended
	No
	Yes
	No

	Training
	N/A
	Multiple passes
	Single Bottom-up pass
	Multiple passes

	Wrapper or Mixture?
	Wrapper
	Wrapper
	Both
	Wrapper


Table-1 Comparison of Various Ensemble systems

Several interesting features of the algorithm are worth noting. The algorithm maintains a weight distribution Dt(i) on training instances xi, i = 1, . . . , N, from which training data subsets St are chosen for each consecutive classifier (hypothesis) ht. The distribution is initialized to be uniform, so that all instances have equal likelihood to be selected into the first training dataset. The training error εt of classifier ht is also weighted by this distribution, such that εt is the sum of distribution weights of the instances misclassified by ht.  It requires that this error be less than 1/2. A normalized error is then obtained as βt , such that for 0 < εt < 1/2, we have 0 < βt < 1. 

In distribution update rule: the distribution weights of those instances that are correctly classified by the current hypothesis are reduced by a factor of βt, whereas the weights of the misclassified instances are unchanged. When the updated weights are renormalized, so that Dt+1 is a proper distribution, the weights of the misclassified instances are effectively increased. Hence, iteration by iteration, AdaBoost focuses on increasingly difficult instances. Once a preset T number of classifiers are generated, AdaBoost is ready for classifying unlabeled test instances. Unlike bagging or boosting, AdaBoost uses a rather undemocratic voting scheme, called the weighted majority voting. The idea is an intuitive one: those classifiers that have shown good performance during training are rewarded with higher voting weights than the others. Recall that a normalized error βt was calculated. The reciprocal of this quantity, 1/βt is therefore a measure of performance, and can be used to weight the classifiers. Furthermore, since βt is training error, it is often close to zero and 1/βt can therefore be a very large number. At the end, the class that receives the highest total vote from all classifiers is the ensemble decision.

A conceptual block diagram of the AdaBoost algorithm is provided in Figure 1. The diagram should be interpreted with the understanding that the algorithm is sequential: classifier CK is created before classifier CK+1, which in turn requires that βK and the current distribution DK be available.
[image: image1.emf]
Figure-1 Block diagram of AdaBoost.M1 algorithm
III. Incremental learning

A. How to achieve incremental learning

There are several approaches for incremental learning; we focus on recently developed ensemble-based systems that make creative use of bootstrap based ideas. These approaches involve generating an ensemble of classifiers for each dataset that becomes available, resulting in an ensemble of ensembles.
The research work of Aliasgar Gangardiwala and Robi Polikar shows that The original version of Learn++ followed the AdaBoost approach in determining voting weights, which were assigned during training depending on the classifiers’ performance on their own training data. While this approach makes perfect sense when the entire data come from the same database, it does have a handicap when used in an incremental learning setting: since each classifier is trained to recognize (slightly) different portions of the feature space, classifiers performing well on a region represented by their training data may not do so well when classifying instances coming from different regions of the space. Therefore, assigning voting weights primarily on the training performance of each classifier is suboptimal. Estimating the potential performance of a classifier on a test instance using a statistical distance metric, and assigning voting weights based on these estimates may be more optimal. Therefore, this distribution update rule is designed specifically to accommodate incremental learning of additional datasets, especially those that introduce previously unseen classes. So, unless there is compelling reason to choose otherwise, the distribution weights are initialized to be uniform, so that all instances have the same probability of being selected into the first training subset. If k>1 (that is, new database has been introduced), a distribution initialization sequence reinitializes the data distribution based on the performance of the current ensemble on the new data. The new algorithm provides improved performance, stronger immunity to catastrophic forgetting and finer balance to the stability-plasticity dilemma than its predecessor, particularly when new classes are introduced. For each iteration t, the instance weights wt are updated according to the performance of Compound hypothesis such that the weights of instances correctly classified by Ht are reduced (and those that are misclassified are effectively increased).

B. LEARN++

Similar to AdaBoost, Learn++ also creates an ensemble of (weak) classifiers, each trained on a subset of the current training dataset, and later combined through weighted majority voting. Training instances for each classifier are drawn from an iteratively updated distribution. The main difference is that the distribution update rule in AdaBoost is based on the performance of the previous hypothesis which focuses the algorithm on difficult instances, whereas that of Learn++ is based on the performance of the entire ensemble, which focuses this algorithm on instances that carry novel information. This distinction gives Learn++ the ability to learn new data, even when previously unseen classes are introduced. Figure-2 shows the block diagram of Learn++ algorithm. As new data arrive, Learn++ generates additional classifiers, until the ensemble learns the novel information. Since no classifier is discarded, previously acquired knowledge is retained. 

[image: image2.emf]
Figure-2 Block diagram of Learn++ algorithm

Learn++ works rather well on a variety of real world problems, though there is much room for improvement. An issue of concern is the relatively large number of classifiers required for learning instances coming from a new class. This is because, when a new dataset introduces a previously unseen class, new classifiers are trained to learn the new class; however, the existing classifiers continue to misclassify instances from the new class. Therefore, the decisions of latter classifiers that recognize the new class are out-voted by the previous classifiers that do not recognize the new class, until a sufficient number of new classifiers are generated that recognize the new class. This leads to classifier proliferation.

So, the original algorithm is modified and the novelty of the new algorithm is its use of preliminary confidence factors in assigning voting weights, based on a cross-reference of the classes that have been seen by each classifier during training.

Specifically, if a majority of the classifiers that have seen a class votes on that class, the voting weights of those classifiers who have not seen that class are reduced in proportion to the preliminary confidence[4]. This allows the algorithm to dynamically adjust the voting weights for each test instance. The approach overcomes the outvoting problem inherent in the original version of Learn++ and prevents proliferation of unnecessary classifiers. The new algorithm also provided substantial improvements on the generalization performance on all datasets we have tried so far. We note that these improvements are more significant in those cases where one or several new classes are introduced with subsequent datasets.

C. LEARN++  Vs. AdaBoost?

Learn++ uses similar ensemble generation structure as AdaBoost but there are several key differences [2, 10]: 

1. AdaBoost runs on a single database; it has no distribution re-initialization; and it stops and aborts if εt > ½ for any ht.
2. AdaBoost is designed to improve the performance of a weak classifier, for which it uses the performance of the current single hypothesis ht to update its weight distribution. Learn++, however, creates a composite hypothesis Ht representing the ensemble decision, and uses the ensemble performance to update its weight distribution. This allows a more efficient incremental learning ability, particularly if the new database introduces instances from a previously unseen class. When instances of a new class are introduced, an existing ensemble Ht – not yet seen instances of the new class, is bound to misclassify them, forcing the algorithm to focus on these instances that carry novel information. For a weight update rule based on the performance of ht only, the training performance of the first ht on instances from the new class is independent of the previously generated classifiers. Therefore, the new ht is not any more likely to misclassify new class instances, which then causes AdaBoost to focus on other difficult to learn instances, such as outliers, rather than the instances with novel information content. 

Learn++ was previously shown to be capable of incremental learning, however, its incremental learning ability has not been compared to that of AdaBoost. Given that AdaBoost was not originally designed for incremental learning. However, Learn++ shares much of its algorithmic detail with AdaBoost. The main difference is the distribution update rule being based on ensemble decision, rather than the previous hypothesis. Therefore, questions of particular interest are as follows: 

1. Is the incremental learning ability of Learn++ primarily due to creating and combining an ensemble of classifiers?, or
2. Is it due to the strategic selection of the distribution update rule? If ability is provided to learn incrementally. 

In order to answer this question, and establish the true impact of the difference in distribution update rules, the two algorithms must be made equivalent in all other aspects. Therefore, we slightly modify AdaBoost as follows[2]:

1. Allow it to generate additional ensembles with new data, using the same distribution re-initialization as Learn++ (but retaining its own single-hypothesis-based distribution update rule). 
2. Also allow AdaBoost to generate a replacement hypothesis for any ht that does not satisfy εt < ½ requirement. 
3. Therefore, the only difference left between the modified AdaBoost and Learn++ is the distribution update rule. 

Results indicate that AdaBoost.M1 can indeed learn incrementally from new data; however, its effectiveness is limited by its single-hypothesis-based distribution update rule. We should quickly point out that this is not a short coming of AdaBoost, as the algorithm was not originally intended for incremental learning, but rather to allow weak classifiers learn in an ensemble structure. As consistently seen in all results, and in particular in hostile learning  environments, where the consecutive databases may introduce instances of new classes and/or remove instances from previously seen classes, the ensemble-based distribution update rule of Learn++ provides substantial performance improvement.. Therefore, we conclude that the ensemble based distribution update rule is indeed crucial in achieving efficient incremental learning.

We also note that Learn++ achieved narrower confidence intervals in its performances. This is significant, because a narrower confidence interval indicates better stability and robustness, qualities of considerable concern in incremental learning. Improved generalization performance along with a narrower confidence interval shows that Learn++ can achieve a delicate balance on the stability-plasticity spectrum. 

We should note that despite its relative inferior performance in incremental learning, AdaBoost is still a strong contender: it has certainly shown promise in incremental learning of certain applications, including learning new classes. We believe that AdaBoost can still be used for incremental learning applications where the learning environment is less hostile. Also, since we were interested in efficient incremental learning, the ensemble sizes were kept to minimum. If AdaBoost were allowed to generate additional classifiers, it could have achieved better performances. The incremental learning ability of AdaBoost under such cases is currently being investigated.

IV. Results

Learn++ has been tested on several databases. We present results on two benchmark databases and one real-world application. The benchmark databases are the Wine database and the Optical Character Recognition database from UCI, and the real world application is a gas identification problem for determining one of five volatile organic compounds based on chemical sensor data. MLPs – normally incapable of incremental learning – were used as base classifiers on all three cases. Base classifiers were all single layer MLPs with 20~50 nodes and a rather generous error goal of 0.1 ~ 0.01 to ensure weak classifiers with respect to the difficulty of the underlying problem.
Wine Recognition Database:
The Wine Recognition database features 3 classes with 13 attributes. The database was split into two training, a validation, and a test dataset. The data distribution is given in Table 2. In order to test the algorithms’ ability to incrementally learn a new class, instances from class 3 are only included in the second dataset. Each algorithm was allowed to create a set number of classifiers (30) on each dataset. The optimal number of classifiers to retain for each dataset was automatically determined based on the maximum performance on the validation data. Each row shows class by-class generalization performance of the ensemble on the test data after being trained with dataset Dk, k=1,2. The last two columns are the average overall generalization performance over 30 simulation trials (on the entire test data which includes instances from all three classes), and the standard deviation of the generalization performances. The number of classifiers in the ensemble after each training session is given in parentheses.
Table 2. Wine Recognition database distribution[image: image3.emf]
Table 3. Performance results on Wine Recognition database.


[image: image4.emf]
Tables 2 and 3 show that Learn++ not only incrementally learns the new class, but also outperforms its predecessor by 15% using a significantly fewer number of classifiers. 

V. Recent issues for research

 The existing algorithm works well with the weight updating rule based on compound hypothesis but there is no proof at this time that Learn++ learning rule is optimal, as the algorithm (while based on some well founded theoretical concepts) is nevertheless somewhat heuristic. The algorithm can be better optimized by modifying distribution update rule which uses previous as well as compound hypothesis for weight updating of the instances. Also, there are some open problems of Learn++:

1. Is there a better initialization scheme? 

2. Can Learn++ be used in a non-stationary learning environment, where the data distribution rule changes (in which case, it may be necessary to forget some of the previously learned information – throw away some classifiers)
3. How can Learn++ be update / initialized if the training data is known to be very unbalanced with new classes being introduced?
4. Can the performance of Learn++ on incremental learning be theoretically justified?
5. Does Learn++ create more or less diverse classifiers? An analysis of the algorithm on several diversity measures.
6. Can Learn++ be used on function approximation problems?
7. How does Learn++ behave under different combination scenarios?
One can improve the performance of Learn++ algorithm by modifying the weight updating rule that can based on the performance of individual and compound hypothesis. Further the selection of voting weights can be optimized.

Future work also includes selection of algorithm parameters, and using other classifiers as weak learners. The algorithm parameters, such as base classifier architecture, error goal, number of hypotheses to be generated, are currently chosen in a rather ad hoc manner. Although the algorithm appears to be insensitive to minor changes in these parameters, a formal method for selecting them would be beneficial. Future work will also include evaluating Learn++ with other classifiers used as weak learners, such as RBF NNs and non-NN-based classification/clustering algorithms.
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