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Abstract - A novel method for the automatic induction of rule-based text classifiers. This supports a hypothesis language of the form “if T1 or _ _ _ or Tn occurs in document d, and none of Tn+1; . . . Tn+m occurs in d, then classify d under category c,” where each Ti is a conjunction of terms. The proposed method is simple and elegant. Despite this, the results of a systematic experimentation performed on the REUTERS-21578, the OHSUMED, and the ODP data collections show that it provides classifiers that are accurate, compact, and comprehensible. A comparative analysis conducted against some of the most well-known learning algorithms (namely, Naive Bayes, Ripper, C4.5, SVM, and Linear Logistic Regression) demonstrates that it is more than competitive in terms of both predictive accuracy and efficiency. 
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I.INTRODUCTION

Text classifier (or simply “classifier”) is a program capable of assigning natural language texts to one or more thematic categories on the basis of their contents. A number of machine learning methods to automatically construct classifiers using labeled training data have been proposed in the last few years, including k-nearest neighbors (k-NN), probabilistic Bayesian, neural networks, and SVMs. Overviews of these techniques can be found in [2] and [6].In a different view, rule learning algorithms, such as [4],[5], have become a successful strategy for classifier induction. Rule-based classifiers provide the desirable property of being interpretable and, thus, easily modifiable based on the user’s a priori knowledge. In this paper, we propose Olex, a novel method for the automatic induction of rule-based text 
classifiers. Here, a classifier is a set of propositional rules, each characterized by one positive literal and (zero or) more negative literals. A positive (respectively, negative) literal is of the form T ε d (respectively, ¬T ε d), where T is a conjunction of terms t1 ^ _ _ _ ^ tn (a term ti being a n-gram) and d a document. Rule induction is based on a greedy optimization heuristics whereby a set of high-quality rules is generated for the category being learned. Unlike other (either direct or indirect) rule induction algorithms, e.g., Ripper and C4.5, Olex is a one-step process, i.e., it directly mines the final rule set, without the need of any post induction optimization. Experimental results,  obtained  on   three   standard benchmark data collections, namely, REUTERS-21578, OHSUMED,and ODP, confirm the expectations on our model. In fact, Olex achieves high performance on all data sets and induces classifiers that are compact and comprehensible. The comparative analysis performed against some state-of-the art learning methods, notably, Naive Bayes (NB), Ripper, C4.5, polynomial SVM, and Linear Logistic Regression(LLR) demonstrates that Olex is more than competitive in terms of both predictive accuracy and efficiency. A previous version of Olex, where rules with just “simple” terms (i.e., terms of the form T ε d and ¬T ε d) are learned, is described in [4]. In the remainder of this paper, after providing an overview of Olex and giving some preliminary definitions and notation. We state the optimization problem of selecting a best set of discriminating terms (which is the heart of our method) and prove that this task is computationally difficult. Thus, we propose a heuristic approach to solve it and give a description of the whole learning process. Then, we present the experimental results and provide a performance comparison with some well-known learning algorithms.

II. PRELIMINARY DEFINITIONS


1. A finite set C of categories, called classification scheme, 2. a finite set D of documents (i.e., sequences of words), called corpus; D is partitioned into a training set TS, a validation set and a test set; the training set along with the validation set represent the so-called seen data, used to induce the model, while the test set represents the unseen data, used to asses the performance of the induced model, and Now, the problem is that of automatically inducing, for each c ε C, a set of classification rules (the classifier or the hypothesis of c) by learning the properties of c from both the documents of the training set (providing the relationship term-document) and the ideal classification (providing the positive examples). We assume that categories in C are mutually independent, i.e., the classification results of a category c do not depend on the classification results of any other category. Thus, the whole learning task consists of ׀C׀ independent subtasks (one for each category). For this reason, in the following, we will concentrate on a single category c ε C. Once a classifier for category c has been constructed, its capability to take the right categorization decision is tested by applying it to the documents of the test set and then comparing the resulting classification to the ideal one. The effectiveness of the predicted classification is measured in terms of the classical notions of Precision, Recall, and F-measure [2] defined as follows:

I TPc I


I TPc I


  Pr  = ------------------     Re  = ------------------      

         I TPc I +I FPc I
    I TPc I +I FNc I

where I TPc I is the number of true positive documents w.r.t. c (i.e., the number of documents of the test set that have correctly been classified under c), FPc the number of false positive documents w.r.t. c, and FNc the number of false negative documents w.r.t. c, defined accordingly. Further, the parameter α ε [0 _ _ 1] in the definition of the F-measure is the relative degree of importance given to Precision and Recall; notably, if α =1, then Fα coincides with Pr and if α =0, then F_ coincides with Re (a value of α=0:5 attribute the same importance to Pr and Re)
III. PROBLEM DEFINITION AND COMPLEXITY
This section, we provide a description of the optimization problem aimed at generating a best set of discriminating terms (d-terms, for short) for category c ε C. In particular, we give a formal statement of the problem and show its complexity. To this end, some preliminary definitions are needed (Table 1). A term (or n-gram) is a sequence of one or more words, or variants obtained by using word stems, consecutively occurring within a document. A scoring function ø (or feature selection function—often simply “function”, hereafter), such as Information Gain and Chi Square (see, e.g., [1] and [3]), assigns to a term t a value ø(t,c) expressing the “goodness” of t w.r.t. category c. Scoring functions are used in TC for dimensionality reduction: non informative words are removed from documents in order to improve both learning effectiveness and time efficiency.

Definition 1 (vocabulary). 


Given a scoring function ø and a nonnegative integer vi, let Vc(ø,v) denote the set consisting of the v terms t, occurring in the documents of TSc, having the highest value of  ø(t,c). The vocabulary V(ø,v),  for the given ø and v, is UcεC Vc(ø,v),   i.e., the set consisting of the best v terms, according to ø, of each category c ε C.

Definition 2 (coterms).


 Let us fix a vocabulary          V (ø,v). A coterm (conjunctive term) T over V (ø,v) of degree k is a conjunction of terms t 1^ _ _ _ ^ tk, with ti ε V(ø,v), 1 ≤ i ≤ k. A coterm of degree 1 is a simple term. We say that T occurs in a document d, denoted T ε d, if each term ti occurs in d, 1 ≤ i ≤ k. Let us denote by T{} the set {t1; . . . ; tk} of terms of T. We say that two coterms T1 and T2 are independent if neither T1{} c T2{} nor T2{}  c T1{}. For an instance, t1 ^ t2 and t1 ^ t3 are independent, while t1 and t1 ^ t2 are not.

Definition 3 (d-terms).


 Let us fix a vocabulary V(ø,v). A d-term (discriminating term) for c over V(ø,v). is a pair < T,s > , where T is a coterm over V(ø,v) and s ε{+,-} the sign of T. We will represent< T,s > as Ts. A d-term with sign “+” (respectively, “_”) is called positive (respectively, negative) d-term. We say that 1) Ts occurs in a document d if T occurs in d, 2) Ts has degree k if T has degree k, and 3) T1s and T2s are independent if T1 and T2 are so. Intuitively, a positive d-term for c occurring in d is interpreted as indicative of membership of d in c, while a negative d-term is taken as evidence against membership.

TABLE 1

List of the Main Symbols Used in This Paper
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 IV. DOCUMENT PREPROCESSING

Preliminarily, all corpora were subjected to the following preprocessing steps. First, we removed from documents all words occurring in a list of common stop words, as well as punctuation marks and numbers. Then, we generated the stem of each of the remaining words, so that documents were represented as sets of word stems. Second, we proceeded to the partitioning of the training corpora:  As far as REUTERS-21578 and OHSUMED are concerned, we segmented each corpus into five equalized partitions for cross validation. During each run, four partitions will be used for training, and one for validation (note that validation and test sets coincide in this case). Each of the five combinations of one training set and one validation set is a fold. . Concerning ODP-S25 (for which the holdout method was used), we segmented the corpus into two partitions: the seen data (70 percent of the corpus documents) and the unseen data (the remaining 30 percent). The former is used to induce the model (according to the learning process of Fig. 2), while the latter is used for testing. The seen data were then randomly split into a training set (70 percent), on which to run algorithm Greedy-Olex, and a validation set, on which tuning the model parameters. We performed both the above splits in such a way that each category was proportionally represented in both sets (stratified holdout). Finally, for every corpus and training set, we scored all terms occurring in the documents of the training set TSc of c, for each c ε C. To this end, we used the scoring function Chi Square5 (see, e.g., [2] and [3]), defined as follows



         N (AD-CB) 2

CHI (t, c) =     -----------------------------------


         (A+C) (B+D) (A+B) (C+D)

where A, B, C, and D, according to the two-way contingency table of a term t and a category c, have the following meaning: A is the number of documents in TSc where t occurs; B the number of documents not in TSc where t occurs; C the number of documents in TSc where t does not occur, and D the number of documents not in TSc where t does not occur. Further, N is the total number of documents. Intuitively, function CHI measures the lack of independence between a term t and a category c; its value is zero if t and c are independent. Function CHI is frequently used to assess term-goodness in the area of machine learning; Yang and Pedersen [3] reported that CHI (along with Information Gain) performed best in their benchmarks.

V. PERFORMANCE METRICS 


Classification effectiveness was measured in terms of the classical notions of Precision, Recall, and  F-measure, as defined in Section 3. To obtain global estimates relative to experiments performed over a set of categories, the standard definition of micro averaged Precision and Recall was used, notably

£cεCI TPc I                 £cεCI TPc I


µPr  = ------------------         µRe  = ------------------      

        £cεC (I TPc I +I FPc I)   £cεC (I TPc I +I FNc I)

Based on the above formulas, both the micro averaged F-measure and break-even point (BEP) were consistently calculated (the latter as the arithmetic average of micro averaged Precision and Recall).

A. Results with REUTERS (Cross Validation):


 The first data set we considered is the REUTERS-21578 and the task was to assign documents to one or more categories of R90. As already mentioned, performance evaluation was based on fivefold cross validation. At each fold, we conducted a number of experiments for the induction of the best classifier of each category in R90 according to the algorithm sketched in Fig. 2. In particular, the algorithm was executed with input vocabularies V (CHI; v), with v ε {10; 20; 30; . . . ; 100}; the parameter α was set to = 0:5 to attribute equal importance to Precision and Recall. Once learned the best classifier of each category, we computed (at each fold) the micro averaged performance over all categories.

1) Performance: 


Table 2 reports the micro averaged F-measure and BEP obtained at each of the five folds, and the respective means (equal to 85.08 and 85.10, respectively). It provides a picture of the results for the 10 most frequent categories of R90 (hereafter referred to as R10), averaged over the five folds. In particular, besides F-measure and BEP, for each category we report the average characteristics of the respective best. 

TABLE 2

R90—Cross-Validation Results
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classifiers (i.e., number of rules and number of negative literals occurring in each rule—recall that the sum of these two values equals the number of induced d-terms). From this table, we can see that the induced classifiers are very compact (consisting of at most 16 rules). Also, the number of negative terms is relatively small. This, according to the remark of Section 6, entails a great benefit in terms of efficiency, as the number of d-terms generated for a category (which hovers around a few tens) is negligible w.r.t. vocabulary size (which, on the contrary, consists of thousands of terms).(highlighted in bold), thus starting decreasing—that is, a reduction of the vocabulary size provides a benefit in terms of performance.
2) Effect of Category Size on Performance: 


We partitioned the categories in R90 with more than seven documents into four intervals, based on their size. Then, we evaluated the mean F-measure over the categories of each group, averaged over the five folds. Results are summarized in Table 5. As we can see, the F-measure values indicate that performances are substantially constant on the various subsets, i.e., there is no correlation between category size and predictive accuracy (this is not the case of other machine learning techniques, e.g., decision tree induction classifiers, which are biased toward frequent classes. 
VI. EMPIRICAL TIME COMPLEXITY

 The progression of the runtimes (expressed in seconds) of Algorithm Greedy-Olex as vocabulary size increases (notice that v ranges between 10 and 300 terms/category, while the maximum value for v used for performance evaluation was 100 for all data sets). In particular, concerning the REUTERS-21578 and the OHSUMED data sets, the reported values are the average times over the five folds. For each vocabulary size, we show both the runtimes over all categories and the average runtime per category. The empirical analysis of the runtimes curve indicates that the algorithm is in general quite efficient, with a practical behaviour on all data sets well under the n3 worst-case complexity. This should not be surprising because, as remarked in Section 6, the actual complexity of the algorithm depends on the number of generated d-terms (normally a few tens) rather than on the vocabulary size (normally several thousands of terms). A time efficiency comparison with other learning algorithms is reported in the next section.

VII. TIME EFFICIENCY

 The execution times for all the evaluated methods on the REUTERS-21578 and OHSUMED data sets are reported in the last row of Tables 10 and 12, respectively. As we can see, NB is by far the fastest method. Among the remaining algorithms, Olex (along with SimpleOlex) is definitively the most efficient. On the other side, LLR is by far the worst performer. The efficiency hierarchy on ODP-S25 essentially confirms the one obtained on the other two data collections (again, NB is the fastest method, and Olex is faster than SVM). The execution time over ODP demon- strates scalability of Olex.
VIII. CONCLUSION


It is proposed consistently to achieve comparatively high-performance results, significantly outperforming most of the other approaches. In addition, it showed to be very efficient (by far the fastest method, apart from NB, from both predictive accuracy and efficiency viewpoints). Further, Olex enjoys a number of desirable properties: 1) It induces classifiers that are compact and comprehensible. 2) It is accurate even for relatively small categories (i.e., it is not biased toward majority classes). 3) It is robust, i.e., shows a similar behaviour on all data sets we have experimented. All this makes Olex an interesting approach for learning rule-based text classifiers from training sets.
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