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ABSTRACT

Given two spatial datasets P (e.g., facilities) and Q (queries), a nearest neighbor  (NN) query retrieves the point(s) of P with the smallest group distance(s) to points in Q. Assuming, for example, n users at locations q1, . . . qn, a NN query outputs the facility p ε P that minimizes the sum of distances |pqi | for 1 ≤ i ≤ n that the users have to travel in order to meet there. Similarly, another NN query may report the point p ε P that minimizes the maximum distance that any user has to travel, or the minimum distance from some user to his/her closest facility. If Q fits in memory and P is indexed by an R-tree, we develop algorithms for nearest neighbors that capture several versions of the problem, including weighted queries and incremental reporting of results. 
1. INTRODUCTION

This paper proposes and solves nearest neighbor (NN) queries in spatial databases. Let f be a monotonically increasing function1 and Q = {q1, . . . , qn} be a set of query points. We define the distance between a data point p and Q as adist(p, Q)  =           f (|pq1|, . . . , |pqn|), where |pqi | is the Euclidean distance of p and qi . Given a set P = {p1, . . . , pN} of static data points, a NN query returns the data point p with the minimum group distance. Similarly, a k-NN query outputs the k (≥1) data points 
with the smallest group distances. As an example, consider Figure 1, where the dataset P contains a set of facilities p1, . . . , p12 and Q is a set of user locations q1, . . . , q4. If f is the sum function (Figure 1), the corresponding 1-NN query reports the facility (p9) that minimizes the total distance that the users have to travel in order to meet there, that is, adist(p9, Q) = 
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4 i=1 |p9qi| = 24 ≤ adist(p, Q)
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P. On the other hand, if f is the max function (Figure 2), the NN query will report the facility (p10) that minimizes the maximum distance that any user has to travel (adist(p10, Q) = max4 i=1|p10qi| = |p10q1| = 9), which, in turn, leads to the earliest time that all users will arrive at the meeting point. Finally, if f = min (Figure 3), the result is the facility (p5) which is closest to any user, that is, adist(p5, Q) = min4 i=1|p5qi| = |p5q4| = 1 ≤ adist(p, Q) 
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P. Another interesting instance of NN queries occurs when each point qi in Q is associated with a positive weight wi . Returning to our example, consider that in Figure 1(a) each qi is the position of some airplane carrying wi passengers and the goal is to find the airport p that minimizes the total distance traveled by all passengers (as opposed to airplanes), that is, adist(p, Q) = 
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4i=1 wi |pqi |. Similarly, in Figure 1(b), if each airplane has average travel speed vi , then the airport p that leads to the shortest meeting time is the one that minimizes max4 i=1|pqi |/vi , that is, wi = 1/vi . 

NN queries can be applied to detect abnormalities and guide relocation of components. For the following discussion, we consider Euclidean distance and 2D point datasets indexed by R-trees, but the proposed techniques are applicable to higher dimensions and alternative datapartition access methods (e.g., A-trees). For ease of presentation, the examples focus on the sum, max and min functions due to their significance in practice. 
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Figure.1. f=sum
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Figure. 2. f = max
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Figure.3. f = min
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Figure. 4. Example of MQM.

3.1 Multiple Query Method

The multiple query method (MQM) utilizes the main idea of the threshold algorithm, that is, it performs incremental NN queries for each point in Q and combines their results. 
Assume the set of data points shown in Figure 4 and a query with Q = {q1, q2}, f = sum. MQM retrieves the first NN of q1 (p10 with |p10q1| = 1) and computes |p10q2| = 5, adist(p10, Q) = |p10q1| + |p10q2| = 6. Similarly, the method finds the first NN of q2 (point p12 with |p12q2| = 1) and computes |p12q1|=6, adist(p12, Q)=7. Since adist(p10, Q)<adist(p12, Q), p10 becomes the current NN (best NN) of Q. Best dist (= 6) denotes the group distance of best NN (p10). For each query point qi , MQM stores a threshold ti, which is the distance of its current NN, that is, t1 = |p10q1| = 1 and t2 = |p12q2| = 1. The total threshold T is defined as T = f (t1, . . . , tn), which in this case is the sum of the two thresholds (=2). Continuing the example, since T < best dist, it is possible that there exists some point in P whose distance to Q is smaller than best dist. Therefore, MQM retrieves the second NN of q1 (p11) and computes the group distance adist(p11, Q) = |p11q1| + |p11q2| = 8. The best NN remains p10 because best dist < adist(p11, Q). The threshold values are set to t1(= |p11q1|) = 4, T = 5 and MQM continues since best dist(=6) > T. The next query finds again p11 (as the second NN of q2) and sets t2 = 4 and T=8. MQM now terminates (best dist < T) with p10 as the result. 

3.2 Single Point Method

MQM may incur multiple accesses to the same nodes and retrieve the same data point through different queries. To avoid this problem, the single point method (SPM) processes NN queries by a single index traversal. First, SPM computes the group centroid q of Q, which is a point in space that minimizes (exactly or approximately) the value of adist(q, Q). The intuition behind this approach is that the nearest neighbor is a point of P “near” q. The centroid depends on the function f and its exact computation is not always possible. Nevertheless, SPM returns correct results for any possible selection of q; a good approximation (or, ideally, an exact group centroid) leads to fewer node accesses. It remains to derive (i) the computation of q, and (ii) the range around q in which we should search for points of P, before we conclude that no better NN can be found.

Centroid Computation. The centroid computation is performed at the initialization phase of SPM and does not incur any I/O operations since Q is memory-resident. In the case of sum, q minimizes the function adist(q, Q) = Σni=1 |qqi |, and is also known as the Fermat—Weber .
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Figure 5. Pruning of nodes in SPM.

In our implementation, we use the gradient descent method to quickly obtain a good approximation. Specifically, the method starts with the geometric centroid, that is, [image: image14.emf] and [image: image15.emf], and modifies its coordinates as follows:
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where η is a step size. The process is repeated until the distance function adist(q, Q) converges to a minimum value. 
The same technique, but with initial coordinates (for the geometric centroid) [image: image17.emf]and [image: image18.emf]captures the existence of weights. For the max function, the centroid (minimizing the function adist(q, Q) = maxn i=1|qqi |) corresponds to the center of the smallest disk that contains all points in Q. This is also known as the minimum enclosing circle problem, for which a variety of algorithms derive exact answers. 
3.3 The minimum bounding method (MBM) 
MBM uses directly the group distance between each node N and all query points: amindist (N, Q) = f (mindist(N, q1), . . . , mindist(N, qn).  

Starting from the root of the R-tree for dataset P, MBM visits only nodes that may contain candidate points. 

Figure 6 shows a set of query points Q = {q1, q2} and its current best NN for sum(best dist = 5). N2 is pruned because mindist (N2, q1) + mindist(N2, q2) = 6 ≥ best dist = 5. For max, the pruning condition becomes maxni=1 mindist(N, qi) ≥ best dist, that is, N2 is pruned because mindist (N2, q1) = 5 ≥ bestdist = 3. For min, it transforms to minni=1 mindist(N,qi) ≥ best dist, i.e., N2 must be visited because mindist(N, q2) = 1 <bestdist= 2. 
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Figure. 6. Pruning of nodes by MBM

In order to prove the correctness of MBM it suffices to show that pruning is safe. For every point p in N it holds that |pqi| ≥ mindist(N, M) for each qi . Due to the monotonicity of f : adist(p, Q) = f (|pq1|, . . . , |pqn|) ≥ f (mindist(N, M), . . . , mindist(N, M)) = amindist(N, M). Therefore, for all points in a node N pruned holds that adist(p, Q) ≥ amindist(N, M) ≥ best dist. Similarly, for Heuristic 2, since mindist(N, qi) is the minimum distance between N and query point qi ε Q : adist(p, Q) ≥ amindist(N, Q) ≥ best dist for all points p in N. Hence, It is also safe because N cannot contain a better NN than the current one. It is easy to verify that the proof of correctness captures the existence of weights. 
3.4 Discussion

The extension of all methods we have discussed is similar to that of conventional NN algorithms. In particular, the k current neighbors are maintained in a list of k pairs <p, adist(p, Q)> (sorted on adist(p, Q)) and best dist equals the distance of the kth NN. Whenever a better neighbor is found, it is inserted in the list and the last element is removed. All algorithms can be used in any dimensionality. However, similar to other variations of nearest neighbor search, they are expected to suffer from the dimensionality curse. Furthermore, since the performance of R-trees deteriorates fast with the number of dimensions and we focus on spatial data, in the sequel we assume 2D spaces. In addition, each method can be extended to other distance metrics: (i)MQM simply requires the incremental retrieval of NNs according to the new metric, (ii) SPM requires that the metric satisfies the triangular inequality, whereas (iii) MBM requires simple modifications of the amindist definitions. Zero weights are trivially captured by removing the corresponding query points from the query set. 

8. CONCLUSION
In this paper, we propose the novel problem of nearest neighbor retrieval, a generalized form of NN search, where there are multiple query points and the optimization goal depends on an input function . NN is important both as a standalone query type in spatial applications (e.g., GIS, VLSI), as well as a module for efficient clustering-related methods. We provide algorithms for memory-resident queries that accurately predict their performance in terms of node accesses. In the future, we intend to explore the application of related techniques to variations of NN search. 
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