Proceedings of the International Conference , “Computational Systems and Communication Technology”

 8th , MAY 2010 - by Cape Institute of Technology,

Tirunelveli Dt-Tamil Nadu,PIN-627 114,INDIA

DESIGN OF GF MULTIPLIER ARCHITECTURE USED IN MULTI-CORE CONFIGURABLE AES FOR INFORMATION SECURITY

 SINI S RAJ, (II M.E-VLSI Design)

 Department of Electronics and Communication Engineering, Francis Xavier Engineering College,

Tirunelveli, Tamilnadu.E-mail: sinis_raj@yahoo.co.in
 Mr. VELLAPANDIAN, M.E., Asst. Professor
 Department of Electronics and Communication Engineering, Francis Xavier Engineering College,

Tirunelveli, Tamilnadu.E-mail: m.vellapandian@gmail.com
Abstract — The ever-increasing growth of data communication in the field of e-commerce transactions and mobile communication data security has gained utmost importance. Information security issues add to the need for developing high-performance network processing hardware, particularly that for real-time processing of cryptographic algorithms. This paper presents a configurable architecture for Advanced Encryption Standard (AES) encryption, whose major building blocks are a group of AES processors. Each AES processor provides block cipher schemes with a novel on-the-fly key expansion design for the original AES algorithm and an extended AES algorithm. This design can be applied to high-speed systems since its independent data paths greatly reduce the input/output bandwidth problem. The AESTHETIC engine consists of GF multiplication. The main operation of GF multiplication is multiplication and addition. Multipliers are used to perform the GF operation. The multipliers used are karatsuba multiplier, Massey and Omura multiplier Massey, and Lee-Lu-Lee multiplier. The performance and efficiency of the multipliers are analyzed and then the high performance multiplier is chosen for designing GF.
I. Introduction

One of the primary reasons that intruders can be successful is that most of the information they acquire from a system is in a form that they can read and comprehend. When you consider the millions of electronic messages that traverse the Internet each day, it is easy to see how a well-placed network sniffer might capture a wealth of information that users would not like to have disclosed to unintended readers. Intruders may reveal the information to others, modify it to misrepresent an individual or organization, or use it to launch an attack. One solution to this problem is, through the use of cryptography, to prevent intruders from being able to use the information that they capture. Encryption is the process of translating information from its original form (called plaintext) into an encoded, incomprehensible form (called ciphertext). Decryption refers to the process of taking ciphertext and translating it back into plaintext. Any type of data may be encrypted, including digitized images and sounds.

Cryptography secures information by protecting its confidentiality. Cryptography can also be used to protect information about the integrity and authenticity of data. For example, checksums are often used to verify the integrity of a block of information. A checksum, which is a number calculated from the contents of a file, can be used to determine if the contents are correct. An intruder, however, may be able to forge the checksum after modifying the block of information. Unless the checksum is protected, such modification might not be detected. Cryptographic checksums (also called message digests) help prevent undetected modification of information by encrypting the checksum in a way that makes the checksum unique. The authenticity of data can be protected in a similar way. For example, to transmit information to a colleague by E-mail, the sender the information to protect its confidentiality and then attaches an encrypted digital signature to the message.
To protect against the chance of intruders modifying or forging the information in transit, encrypting a combination of a checksum of the information and the author’s unique private key forms digital signatures. A side effect of such authentication is the concept of no repudiation. A person who places their cryptographic digital signature on an electronic document cannot later claim that they did not sign it, since in theory they are the only one who could have created the correct signature. Current laws in several countries, including the United States, restrict cryptographic technology from export or import across national borders. In the era of the Internet, it is particularly important to be aware of all applicable local and foreign regulations governing the use of cryptography.
II. Configurable aes (aesthetic)

[image: image7.png]

Fig 1: Block Diagram of the AESTHETIC Processor

The AES algorithm is a symmetric block cipher that processes a series of 128-b data blocks to be encrypted (decrypted), and produces a series of 128-b encrypted (decrypted) data blocks, with a key of 128, 192, or 256 b. The algorithm consists of four transformations on the data block, which are organized in a 4X4 B array, called state. The four transformations are as follows.

1) SubBytes(): Each element of the state is an element in GF(28) with the irreducible polynomial p(x) . A nonlinear operation is applied to each element using an S-box (substitution table). A multiplicative inverse of the element in GF(28) is performed first, followed by an affine transform. The affine transform can be expressed as b(y) = const(x) + y. f(x) mod (x8+1), where y is the inverse of the element, and f(x) and const(x) are two polynomials with a degree less than eight.

2) ShiftRows(): A cyclic shifting operation is done on rows of the state with different numbers of bytes (offsets).

3) MixColumns(): Multiplication of a four-term polynomial with a fixed polynomial c(x) modulo (x4+1) is performed. Each column of the state is considered a four-term polynomial, with coefficients in GF(28).

4) AddRoundKey(): A bitwise XOR operation is done, which adds a round key to the state in each iteration, where the round keys are generated by the key expansion procedure.
III. AESTHETIC ENGINE
[image: image2.emf]
Fig 2: Block Diagram of the AESTHETIC Engine
The figure 2 shows the block diagram of the AESTHETIC engine. It consists of four transforms in the extended AES algorithm and is used for both encryption and decryption. The Block S-box implements the S-box transform for a 128-b data block. The Sub-Bytes and InvSubBytes transforms are implemented using one GF((24)2) inverse and two affine transform modules to eliminate the computation loop. The affine transform and inverse affine transform circuits are identical; however, the functions are different, represented by different input values of affine matrix and constants. ShiftRows and InvShiftRows perform the same functions, as defined in the original AES algorithm.

Since all the coefficients of MixColumn transform are programmable, it requires a 4 X 4 matrix multiplication. Thus in Block MixColumn, we implement 64 GF ((24)2) multipliers to process the data block in parallel. The MixColumn and InvMixColumn functions can easily run on the same hardware bychanging the coefficients according to the processing mode. In the final round of the AES algorithm where the MixColumns() transform is omitted, we configure the value of MixColumn coefficients to perform a unit matrix multiplication. Therefore, no extra hardware is required. The bit-wise AddRoundKey() transform is implemented by two groups of XOR gates that are placed before and after the Block MixColumn module, respectively. The En_De signal selects one of the two groups of XOR gates to determine the output data. In order to balance the computation time in ECB and CBC cipher modes, our data path is designed to perform one round function per clock cycle. In the figure register R1 latches the output data in each round. The output will be fed back to the input of the data path for the next round of computation. Register R2 is used to support the CBC mode. In CBC mode, R2 holds the latest result of the encrypted data block. It will be XORed with the next input data block. In CBC decryption mode, R2 holds the latest input data block. Another register R3 is used to delay one clock cycle of R2’s output, which will be XORed with the current decrypted block in the output block converter.
IV. MULTIPLIERS USED FOR GF

 MULTIPLICATION

Finite field multiplication in GF (2n) is one of the most important operations in cryptographic protocols (RSA, Diffie-Hellman key exchange, DSS, ECC …). That means the optimization on multiplication is critical for overall performance of cryptographic implementations. It is very costly in terms of Area and Delay performances. A lot of researches have been performed in designing performant multipliers (low Area occupation and high-speed computation). Several designs have been reported for multiplication on fields of characteristic two. Efficient bit-parallel multipliers for both canonical and normal basis representation as well as hybrid multiplication have been proposed in literature. All these algorithms exhibit a space complexity of O (n2). However, there are some asymptotically faster methods for finite field multiplications, such as the Recursive Karatsuba-Ofman Algorithm. Published in 1962, it was the first algorithm to accomplish polynomial multiplication in O (n1,58) operations. The Karatsuba-Ofman Algorithm (KOA) can successfully be applied to polynomial multiplication step.
The fundamental Karatsuba-Ofman multiplication (KM) for polynomial in GF (2n) is based on the idea of divide-and-conquer, since the operands are divided into two segments. Compared to the well-known Schoolbook method, the KOA saves multiplications of the partial products at the cost of extra additions. Further work of hardware and software implementations of Karatsuba-Ofman multipliers in literature, was done to improve the KOA and to find bounds of the complexity. Multiplying long numbers (n ≥ 128-bit) using Karatsuba-Ofman algorithm is fast but the algorithm is highly recursive. Our work is related to Karatsuba-Ofman multiplier for large numbers. In this paper, we proposed and developed different Karatsuba-Ofman multiplier designs in GF (2n), intended to perform the design of the cryptographic protocols in embedded system such as smart card and mobile phone. Our design constraints are: the latency, the energy consumption and the area occupation.

[image: image3]
Fig 3: 2 –bit Karatsuba Multiplier

Embedded systems are extremely resource constrained devices in terms of computing and communication capabilities, energy, power, chip and memory area, etc. Moreover, they generally have to work in harsh, uncontrolled, and even hostile surrounding conditions. The security is not only the addition of features, such as specific cryptographic algorithms and security protocols, to the system but also the elaboration of novel design principles, methods, algorithms, designs and techniques in order to efficiently and securely realize cryptographic primitives and security protocols for embedded systems, which are the building blocks for security, privacy, and trust. The implementation of cryptographic systems presents several requirements and challenges. First, the performance of the algorithms is often crucial. One needs encryption algorithms to run at the transmission rates of the communication links. Slow running cryptographic algorithms translate into consumer dissatisfaction and inconvenience.

[image: image4]
Fig 4: 4 –bit Karatsuba Multiplier
It introduces the fundamental KOA which can successfully be applied to polynomial multiplication. The fundamental Karatsuba-Ofman multiplication for polynomial in GF (2n) is a recursive divide-and-conquer technique. It is considered as one of the fastest way to multiply long numbers. For polynomial multiplication with original Karatsuba method both operands have to be divided into two equal parts. If the length of operands is odd, they have to be padded with leading ‘0’. Therefore, the KOA becomes recursive. A straightforward application of the KOA requires log2 (n) iteration steps for polynomials of degree (n-1). Let A = (a0, a1,…, an-1) and B = (b0, b1,…,bn-1), the binary representation of two long integers. The operands A and B can be decomposed into two equal-size parts A1A0 and B1B0 respectively, which represent the n/2 higher and lower order bits of A and B.

V. RESULT

Simulated Environment:

Family: Sparton 3

Device: XC3S400

Synthesis Tool: XST(Verilog/VHDL)

Package: TQ144

Simulator: Modelsim SE-VHDL

[image: image5.png]=181]

[il Edt View Project Source Process TestBench Simuatin Window FHelp RETS

DRPEFLLB2EBX @ [RILPLPXX LR [[H%E mOH[L N[0 @ =] ENENE] = OO

w4

13 5[i gy 50 I L] [5im |

Procssses for.an

Create New Source.

5] View Gerersted TetBench. I_—
—n

O] AddTestBench To Priect
5% i ISE Simulstor
[0 Simte Behavioal Mo

_
[0 o [
I

KT E— |

<

= b run L =
P stop -5
Stopped at Line=s0 file newe=F:/muxL/arc/kun/KL/aw. viw
| >

| Console | @ Erors |_1\ Warnings | {30 TelShell | igg FiinFies | [Sim Canscle-aw |

Tie: 600631158.6 s

Karatsuba 4 bit final - .. |[7= xitinw - 15E - Fymun.. |« @D @) 12540

) start| (3] Micrasoft PowerPoir -.. | £ Project AES [E

wliplie 1.5 - Adob... | £ ¥ahoo! India - Miraso. . | &1 ¥aho! India - Microsa

Fig 5:
VI. CONCLUSION

The configurable AES architecture, called AESTHETIC, which enhances security over standard AES designs. The AESTHETIC architecture supports the original AES algorithm. In this simulation result the computational speed and performance of the karatsuba multiplier is analyzed.
REFERENCES

[1] Mao-Yin Wang, Chih-Pin Su, Chia-Lung Horng, Cheng-Wen Wu and Chih- Tsun Huang “Single and Multi-core Configurable AES Architectures for Flexible Security”, 2009.
[2] NIST, Springfield, VA, “Advanced Encryption Standard (AES)” Nov. 2001.
 [3] NIST, Springfield, VA, “Data Encryption Standard (DES)” Oct. 1999.
[4] S. Frankel, R. Glenn, and S. Kelly, “The AES-CBC cipher algorithm and its use with IPsec,” IETF Netw. Working Group, RFC 3602, 2003 [Online]. Available:http://www.rfc-editor.org/RFCeditor.html.
[5] A. Hodjat and I.Verbauw hede, “Minimum area cost for a 30 to 70Gb/s AES Processor,” in Proc. IEEE Comput. Soc. Annu. Symp., Lafayette, LA, Feb.2004, pp.83–88.
[6] M. Alam, W. Badawy, and G. Jullien, “A novel pipelined threads architecture for AES encryption algorithm,” in Proc. IEEE Int. Conf.-Appl.-Specific Syst., Architectures, Process., San Jose, CA, Jul. 200 pp.296–302.

[7] P .Chodowiec, K. Gaj, P. Bellows, and B. Schott, “Experimental testing of the giga bit IPSec-compliant implementations of Rijndael and triple DES using SLAAC-1 VFPGA accelerator board,” in Proc.ISC, Oct. 2001, vol .2200, LNCS, pp. 220–234.

[8] S. Morioka and A. Satoh, “A 10 Gbps full-AES crypto design with a twisted- BDD S-Box architecture,” in Proc. IEEE ICCD, Freiburg, Germany, Sep.2002, pp.98–103.

[9] I. Verbauwhede, P. Schaumont, and H. Kuo, “Design and performance Testing of a 2.29-GB/s Rijndael processor,” IEEE J. Solid-State Circuits, vol. 38, no. 3, pp. 569–572, Mar. 2003.

[10] S. Mangard, M. Aigner, and S. Dominikus, “A highly regular and scalable AES Hardware Architecture,” IEEE Trans. Comput., vol.52, no.4, pp.483–491, Apr.2003.

[11] C.-P. Su, T.-F. Lin, C.-T. Huang, and C.-W. Wu, “A high-throughput low-cost AES processor,” IEEE Commun. Mag., vol. 41, no.12, pp. 86–91, Dec.2003.

[12] C. Paar, “A new architecture for a parallel finite field multiplier withLow complexity based on composite fields,” IEEE Trans. Comput., vol.45, no.7, pp. 856–861, Jul.1996.

[image: image1.emf][image: image6.png]a3 az ai a0 bz b2 b1 bo
11T N A vy
o et 1
y
X
vy \J \J \J vy
c6 C5 cs c3 C2 ci co

