Workshop on

“Waste Management in Software Engineering & Mathematical Modeling”

8th & 9th November , 2013, R. V. College of Engineering Mysore Road, Bangalore – 560 059

Presentation on Waste Management in Software Development
by

Vijaya Chamundeswari – Delivery Manager, Varagi Technologies Pvt Ltd.

The seven kinds of wastes provide a framework to identify and remove waste during software development process.
1. Partially done work (In Process Inventory)
Partially done work is probably the biggest killer of all the wastes. Partially done work is essentially work-in-progress. Until this work is done, you don't know that there are quality issues i.e. you don't know that the customer will be happy. You don't know if there are going to be problems once you deploy your software onto your production systems. So the idea should be to complete work-in-progress as soon as possible i.e. minimize work-in-progress as much as possible. Examples of partially done work are:

· Code that is completed but not checked in to your version control system - if it's not checked in, you don't know if your code changes are going to break the build

· Undocumented code - If your code is undocumented, if the developer leaves and someone has to take over, there's going to take longer for the developer to get up to speed. Additionally, if bugs are found, it will be harder for the original developer to figure out what he has done.

· Untested code (both unit tests and functional tests) - if your code is untested, you won't know till the code is in your customers hands that there is a bug. The further downstream you are in the process the more costly it's going to be to fix the bugs. So if you build quality in from the start (like writing unit tests) you'll find out the moment you execute the tests

· Code that exists on your staging environment and not your production environment - "works on my machine". Only once you're on production can you be sure the software is 100%. Production always surfaces issues, so the sooner you get it on production servers, the better.

· Code that is commented out - makes the software less readable and maintainable

2. Over - Production

Over production is production ahead of demand. Over production in manufacturing amounts to production of goods that are not required or consumed immediately by a customer. This is very costly in a manufacturing plant. Inventory can become stale, superseded, damaged etc.

Over Production in software development occurs when we build features that are either never or rarely used or that are deployed prematurely.
Let’s say you are working on an existing software product, with the following scenario.

· Customer requests the addition of features X, Y, Z.

· Management approves X, Y, and Z, and decides to add in a features A, B, and C.

· The developer works on the project, implements X, Y, and Z features, along with A, B, and C features, and adds in their own enhancements of D, E and F.

· QA then tests the product and confirms that X, Y, Z, A, B, C, D, E and F features are good, and then suggests adding in G, H and I features to make the feature set “perfect”.

· The work goes back to the developer to add features, G, H and I, which then go through the testing process and get released.

This is the way that software ends up being done much of the time.

Assuming that all of these features are about the same size, complexity or scope, in order to get 3 tasks done, 12 tasks were completed, some of which may not have entirely been thought through, and some of which may have actually made the product harder to use.

In this example there was overproduction 4 times the actual work that needed to be done, taking at least 4 times the time maybe more as the complexity increases, and overall loosing focus on the needs of the customer.

In order to prevent this type of feature creep attacking the process we recommend using the Agile concepts of User Stories, Acceptance Criteria and Tasks with point estimating to implement the right tasks to meet the customer needs.

Imagine of you could measure all of this waste as a software developer, what would your performance review look like at the end of the year. 22% of your time spent on doing what was needed, and 78% of your time on waste, or doing things that weren’t needed or necessarily wanted.

3. Extra processing
Extra processing in Manufacturing is the 3rd waste and this can be equated to Relearning or Rework in Software development. The time we spend relearning things we once knew or having to rework the same feature due to poor code quality can be significant in many organizations, ergo, it's important to be mindful of this. It's probably useful to list examples that would cause extra processing in software development

Undocumented code
If your developers don't document the code properly then later on when you're either fixing the code or making changes to the code due to new feature requirements, your developers (even the original author of code) are going to need to relearn why the code was written that way in the first place. Taking the time to document your code up front while it's fresh in your mind can therefore save the company time and money.

Poor planning
Some project managers assign work to developers in a haphazard manner. Although you do want to ensure there's knowledge overlap on your team, if you keep switching developers on the same features, each time a new developer takes over; he is going to have to relearn what the original developer already knows.

Poor quality
The earlier you find bugs and fix them the less costly it is for the organization. The most expensive scenario is when you find problems once they're already deployed to production. Partly this is due to the fact that the developer now has to reacquaint himself/herself with the code again. So if the developer spends the time upfront to write extensive unit tests, if the team takes the time to define proper acceptance test criteria then the chances of having to rework the code and worse yet relearn the code diminishes significantly

Task switching
The more things you throw at a developer at the same time the longer things take to get done. Task switching beyond 2 tasks is highly inefficient as the developer has to more often than not relearn or re-acquaint himself with the task context each time he switches back.

Poor communication and recording of knowledge
Today, with the proliferation of technology, there's no excuse for poor communication. Wiki's provide a great way for developers to record knowledge about their findings. And search makes it really easy to find information. I am not advocating heave documentation here. I am suggesting short summaries of information on key decisions you made during development so that if someone else has to take over or you have to come back to that code in the future, the relearning curve is not that great.

4. Transportation
Since software comprises information electronically stored and accessed, the physical transport of materials or finished goods is of little concern. However, there is the analogous waste of translating and handing off customer requirements through subsequent phases such as functional specifications, UML diagrams, source code, and tests. In addition, there is also information loss just as finished goods and materials are sometimes damaged through transportation.
There are many such examples of hand-offs in software development:

1. Developer hands off to another developer. In this scenario if the first developer never documented the code properly it's going to take significant addition effort to figure things out. Worse, the second developer may make assumptions and, as a result, introduce bugs in the system.

2. Developers hand off code to testers to test. Many organizations still don't engage QA early enough. Bear in mind that on Agile projects, QA is involved as early as the requirements phase (not that it's a phase). If the QA has no idea what the developer did or the problems he faced or the assumptions he made, then the QA is really just shooting in the dark. It's important that the developer at least includes the QA early on, documents the feature accordingly (no long dissertations), so that an effective transition is made.

3. Handing the code over to deployment teams. Many times I find separate deployment teams struggling to figure out how to get applications deployed. Configuration settings, compile instructions etc if not properly communicated can cause significant delays.

4. Handing-off to customers. If the client is not trained properly, or the software functionality is not documented properly, there will be more support calls for example.

There are many ways in which to reduce transportation wastes in software development:

1. Ensure there is open communication between all parties. Broadband communication (as defined in Agile software development practices) is imperative.

2. Ensure proper, up-to-date and effective documentation is in place where appropriate. Identify these needs up front and ensure there are tasks for this on the backlog.

3. Include all functional areas in the development process.

Be mindful of and identify all these transition points in your organization. This will help minimize costs due to hand-offs in your organization.

5. Motion - Task Switching
Waste #5 in manufacturing is defined as Motion. And motion can be compared to "task switching" in Software Development - as defined by the thought leaders applying Lean thinking to software development.

This is a common practice with few companies for developers to work on more than one project concurrently. Parallel software development doesn’t deliver projects more quickly, even if they are small projects. Tasks switching from one project to another incurs a cost in the form of a time penalty and impacts productivity. When there are a number of projects to complete using the same resources, they’ll be delivered more quickly and usually with better quality if they’re developed sequentially.
In software development task-switching is waste. Every time a developer switches between tasks, about 15 minutes is required to enter the flow of the new task. When frequently interrupted, frustration kicks and more time is required to calm down and become settled once again. If a developer is working in a group or pair programming there’s a productivity boost due to binding and working on a common goal. This is lost when one of the developer’s switches tasks.
Tom DeMarco defines the penalty of task switching as
Task-switching penalty = Mechanics of moving to a new task + Rework due to an inopportune abort + Time to enter flow + Time to defuse frustration + Loss of group binding effect
Task switching increases busyness but most of it is thrashing, non-productive and ineffective work.
6. Focus on the end-to-end process, not individuals

It's important to identify Delays early on and try to rectify them as soon as possible in order to maximize team productivity. It's interesting... I have been reading many interesting threads on the Agile forums lately about measuring developer productivity, team productivity etc. Managers/executives have us focus our efforts and attention on individuals instead of looking at the end-to-end process to find the real issues that address productivity and enhance team effectiveness.

It's actually unbelievable to me that organizations get trapped like this. Always thinking that Developers are the bottleneck. If we learn from what Lean teaches us, simple value stream mapping can uncover the real gems that can increase productivity.

Reducing delays between sprints
It's important to ensure that the value stream is tuned for maximum efficiency where there are little to no delays at any point in the process. For example, yesterday someone posted a question on one of the forums asking if it's possible to not have delays between sprints. Well of course it is possible but it takes hard work to get this right. You have to ensure that the backlog is properly groomed. So you need an effective PO who understands the market, the client etc. You need well written stories. You need estimates from developers early so the PO can make decisions ahead of the planning meeting. It's all about designing delays out of the system so that there are smooth hand-offs at all the transition points. And it's worth mapping this end-to-end process and identifying delays at each of these points.

Common Delays
So what are some of the more common delays you can look for and what can you do to avoid them?

1. Project approvals - waiting for projects to get approved is the most cardinal of all sins as this usually has handfuls of developers sitting around twiddling their thumbs and is a blatant disrespect for peoples time. Coupled with this is the fact that waiting causes dissatisfied and disgruntled employees and only serves to ruin the culture in an organization
2. Waiting for a proper prioritized list of requirements - so that work can get started.

3. Waiting for resources to become available - generally impacts projects significantly. This one is not necessarily an easy one to solve as there are generally budgetary concerns. But this then begs the question - is the company taking on too much? You can't be successful if you're not focused and properly staffed.

4. Change approval processes - well you don't want to hear my opinion on this. Suffice to say, these processes need to be eliminated entirely. And all Agile processes inherently solve these problems. Shortening Sprints helps big time.

5. Increases in work-in-progress - The more work-in-process, the more developers have to wait before they can deploy their code to production.

6. Delays getting client to sign-off on acceptance tests - We have a services business and we find that this is a huge problem for our organization. Not getting sign-off is just a liability for the company as you're not getting paid until you get sign-off

Take the time to assess where delays are occurring and I can guarantee you that the effort spent doing this is hugely beneficial to your productivity, efficiency and overall bottom line.

7. Defects
Software Defect: Any flaw or imperfection in a software work product or software process.

· Software work product is any artifact created as a part of the software process
· Software process is a set of activities, methods, practices and transformations that people use to develop and maintain software work products.
Among all the wastes, defects have to be the most obvious one. They can be very costly for the organization. Defects found early on in the development life-cycle are way less costly to resolve than defects found later on in the cycle; the most expensive being when applications are already in-production.
So to avoid the defects, we need to

1) Prevent them from happening in the first place and

2) Find and fix them as early in the development life-cycle as possible.

So what can you do to prevent them from happening in the first place?

1. Keep your stories small, and unambiguous.

2. Ensure that each story has well defined acceptance test criteria (assisted by input from the customer).

3. Ensure that your code is well tested. Adopting good Test Driven Development habits will pay back in spades.

4. Pair programming and code reviews are excellent ways in which to prevent bugs from being created in the first place.

5. The more you automate the better. So automated functional testing is a good way to automate the functional test plan and get results fast and to ensure that new code changes aren't breaking other parts of the code.

6. Ensure staging environments mimic production as closely as possible.

7. Make sure that as you find new defects, you add unit tests to your test suite to keep your unit testing current.

8. Finally, document your code well.

An interesting quote from Mary and Tom Poppendieck's book called Implementing Lean Software Development,

"If software routinely enters final verification with defects, then it is being produced by a defective process"

which needs to be fixed. So
Step 1: Prevent the bugs from happening in the first place by "mistake proofing" your code

Step 2: Do whatever you can to find the bugs early on in the process while the code is fresh in the developers minds - i.e. ensure you have good functional test plans and test tools.
Step 3: Ensure a proper staging (or test environment) that mimics production environment as closely as possible
Step 4: Get the software into the hands of customers as quickly as possible, so good Agile practices help here.
Step 5: If you find defects, ensure they never happen again by keeping your unit tests current.

Varagi Technologies Pvt Ltd, Level II, 394. Sector-15, Panchkula-134113, Chandigarh Region, India. Ph: +91 172 2591299, www.varagitech.com

